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random field with long-range correlations 
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Staryi Petergof, 198904 Leningrad, USSR 
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Abstract. The three-loop contribution to the anomalous dimension of the diffusion 
coefficient of the model of a random walk in a potential random field with long-range 
correlations is calculated. Contrary to earlier conjectures, the result is not zero for logarith- 
mic growth of the correlations, but vanishes only in one and two dimensions, in which the 
one-loop contribution yields the exact value of the anomalous dimension. 

The problem of diffusion in a random (velocity) field has attracted considerable 
attention [l-31, and a great deal of its properties have been thoroughly studied (see 
the recent review [4] for references). The case of the potential random velocity field 
is of particular interest: the renormalisation-group beta function, which governs the 
long-distance asymptotic behaviour of the model, turns out to be trivial [5] (i.e. all 
the loop contributions to it vanish) leading to disorder-dependent asymptotic behaviour 
at the upper critical dimension d = d,, and strong-disorder regime below it d < d , .  
Moreover, in the two-dimensional case with logarithmically growing correlations of 
the random potential, two-loop and higher-order contributions to the anomalous 
dimension vanish [ 6 ] ,  i.e. it can be calculated perturbatively exactly. It has been 
suggested [ 6 , 7 ]  that this is true for arbitrary dimension of space. This conjecture is 
supported by two-loop calculations [8]. In this letter we show, however, by explicit 
calculation that the three-loop contribution to the anomalous dimension of the diffusiv- 
ity does not vanish identically. We show that, apart from the two-dimensional case, 
the anomalous dimension is determined by the one-loop contribution also in the exactly 
solvable one-dimensional case with logarithmic growth of the correlations of the 
random potential. 

The problem of diffusion in a potential random velocity field is described by the 
equation 

(1) 

where c is the density of diffusing particles, Do is the bare (not renormalised) diffusion 
coefficient, and is the random potential with zero mean and the correlation function 

[a, - DOV(V*(X) + V)]c(x ,  t )  = 0 
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defined by the Fourier transformation F of the (generalised, when necessary) function 
l / l p ( 2 + 2 a  : c0(x - x )  = (+(X)+(X' ) )~= g o ( 2 r r ) - d ~ [ l / l p 1 2 + 2 " ~ ( x  -XI), i.e. 

Here, r is the gamma function and the- (non-negative) bare coupling constant go 
describes the strength of the disorder. We have omitted the finite additive constant, 
which may be present in the relations ( 2 )  for d S 2 + 212. Since the potential + enters 
in the equation ( 1 )  with a derivative, this constant is irrelevant. 

We shall calculate the retarded Green function of the equation ( 1 )  averaged over 
the random potential +. Excluding the variable t by Fourier transformation and using 
functional representation for the + average and the Green function G, in the frequency 
space, we obtain the relation (G,(x, x')),= D,'G,,(x, x') where G,, is the full propa- 
gator of the field theory defined by the action 

s = -&c;'++ J [ m o + ~ ( ~ + ~ + ) ] p .  (3) 

Here, ma = i w /  Do,  and the convention that all closed loops of bare cp@ propagators 
are zero is used [ 6 ] .  All the necessary sums and integrals are implied in the expression 
(3), and subsequent similar formulae. The field theory (3) is multiplicatively renormalis- 
able and, moreover, it can be renormalised by a single renormalisation constant Z [5]. 
Introducing the scaling parameter p we therefore write the renormalised action in the 
form 

where the 'renormalised' correlation function C is obtained from the bare one CO by 
the substitution go + g.  The renormalisation constant Z determines the anomalous 
dimension yD of the diffusion coefficient yD = -Fa In Z/apl0 where the subscript 
indicates that the partial derivative is taken with fixed values of the bare parameters. 
As a consequence of the triviality of the beta function of the model (3), its asymptotic 
behaviour is not universal at the upper critical dimension: the renormalised coupling 
constant g remains a free parameter, on which the anomalous dimension yD depends, 
and we choose g = g o .  

Using the general fact that the anomalous dimension and the beta function do not 
depend on the renormalised mass m of the model [9], we calculate them in the massless 
theory, and henceforth set m = 0. In this case, the normalisation conditions of Green 
functions are usually defined at some finite values of external momenta, which then 
determine the momentum scale p of the renormalised theory. However, we shall be 
constructing the perturbation expansion for a slightly modified model, for which this 
procedure is not sufficient, and therefore introduce the scaling parameter p as the 
infrared cut-off in the regularised ++ correlation function: 

dp exp[ip(x - x')] 
Creg(X - x') = g - I ( 2 X ) d  ( p 2 + p 2 ) ' + "  

To remove large-momentum divergences, we use dimensional regularisation of the 
field theory (3) with the parameter E = 2 + 2 a  - d, where d is the space dimension of 
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the model (the upper critical dimension is d, = 2 +  2a). The full propagator G of the 
renormalised massless field theory (4) may be found by averaging the solution G,(x, y )  
of the equation 

ZV~V+V$(x)lG,(x,y)  = - S ( X - Y )  ( 6 )  

over the renormalised distribution of the random potential $: 

Introducing the function R ( x , y ;  $) = Z i ' Z  exp[$(x)]G,(x,y), where ZR is a new 
renormalisation constant, and the function V(x; $) = exp[-$(x)] - 1 we obtain from 
( 6 )  the equation 

[V2+VV(x; $)V]R(x,y; $) = -Z,la(x-y). (7 )  
Following the argument of [6] it can be shown that the averaged solution ( R )  of this 
equation can be made finite by a suitable choice of the renormalisation constant ZR, 
and that the relation (we use the same notation for functions and their Fourier 
transforms) 

P*G(P) = 2 - I - G  exp(fC,,,(O))H(p/p.; g )  (8) 
holds. Here, H is a finite function, and since G is the renormalised full propagator 
of the field theory (4), we obtain from (8) 

= ZR exp(iCreg(0))* 

up to finite renormalisation. 

different from that in [6]) defined by 
It is convenient to introduce the matrix T (note that this definition of T is slightly 

(9) 
P m  q n  

P 4 
R ( P , ~ ;  $ ) = > T m n ( ~ , q ) ~  

for which we obtain from (7)  the equation 

dk k m  kl 
V( P - k) 7 T,n(k, 4) = - ( 2 7 ~ > ~ 8 (  P + q ) 6 m n z i 1 *  T m n ( P ,  e ) +  1 (2.ir)d k 

Substituting P" = (1 -S)/2, where S m n ( p )  am, - 2 p m p n / p 2 ,  for the longitudinal projec- 
tion operator P k , (  p )  = p m p n / p 2 ,  and applying the convolution theorem we obtain the 
equation 

dk 
T m n ( P ,  q ) + j  U(p-k)Sml(k)T/n(k, 4 )  

4 m 4 n  = -Zi' 2 ( 2 7 7 ) d a ( p +  q )  7 ( 4 

+ [ ( 2 r ) d a ( p + q ) a m l +  ~ ( P + q ) s m 1 ( q ) 1 s i . ( q ) )  

where the Fourier transform of the function U ( x ;  $) = tanh[$(x)/2] has been intro- 
duced, and the relation S2 = 1 used. Averaging the formal solution of this equation 

T=-Zi1[S+2(1+ US)- 'P"] (10) 
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over the renormalised distribution of the random potential $ we obtain a graphical 
representation of the function (T), constructed from vector lines corresponding to S, 
scalar lines corresponding to the (LJ/ correlator ( 5 )  and vertices with two S-legs and 
any odd number of +legs generated by the function U=tanh($/2).  The advantage 
of this representation compared with the original field theory (4) is that the number 
of graphs to be calculated is significantly reduced. The price is that the graphical 
expression for (T) does not correspond to any multiplicatively renormalisable auxiliary 
field theory. Therefore, to carry out the renormalisation, we use the fact that the 
function ( R )  can be made finite by a suitable choice of the renormalisation constant Z R .  

To this end, we define the self-energy matrix 9 of the expression for (Tj 

(( 1 + us)-') = (1 -is)-' (11) 

and the function Q : ( R ( p ,  q ;  + ) ) = ( 2 ~ ) ~ 6 ( p + q ) Q ( p ) / p ~  for which we obtain from 
(9), (10) and (11) the equation 

Q ( P )  = Z i l [ l  -2 Tr((l - i (p )S (p ) ) - 'P" (p ) ) l .  
Expanding ZR and 2 in g 

z R = 1 + z 1 + z z + z 3 + . .  . i = i 1 + i , + i 3 + .  . , 
and choosing the Zis to ensure the absence of divergences in E in the function Q to 
third order in g, we obtain 

z1 = -2z1 

2, = 2%; - 2z2 

z3= - ~ ~ ~ + 4 ~ , ~ 2 - 2 ( C ~ + ~ Z ~ ) .  

Here, we have used a kind of minimal subtraction scheme in the sense that the Zis 
have been determined by the singular in E parts of the contributions of the graphs. 
The bar above a quantity denotes the extraction of the singular part of it. The constants 
X i  are related to the %-matrices as follows: 

i i , m H ( p )  = 6 m n [ z i +  F ~ ( P ~ ) I + P ~ P ~ J ~ ( P * )  
where f; + 0 and J ,  < 0;) in the limit p + O .  

From the earlier two-loop results [8] it follows that z2 = 0, and the Zis are determined 
by the one-loop contribution C, and the three-loop contribution Z3.  2, is given by a 
single one-loop graph and is equal to 2, = -ag/(4n) '+"(2+ a ) &  whereas the expression 
for C3 includes 17 topologically different graphs. In the complicated calculation of 
these graphs we have used the uniqueness method [lo], and also developed new tools, 
which we feel deserve a separate discussion. Therefore, we do not dwell on the details 
of the calculation here, and quote only the final result for Z3: 

z: a( i  +2a)g3 
Z 3 = - +  

6 4 8 ( 4 ~ ) ~ + ~ " r ( 2 +  

x {r (2+  a)'(.* -3a  + i )h(2+ a ) + ( &  (Y -3)[$'(1+ a )  - $'(1)]+2} 

where $' is the trigamma function, and h(  t )  is a function expressed through a two-loop 
massless graph, which we, unfortunately, were not able to calculate in a closed form. 
The definition of h is 

h ( t ) - 2 1  dxldx2 1 
7rZ1 X1X2(X1 -x*)2('-1)(x-x2)*(x-x*)*('-') 
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where the dimension of space is d = 2t. However, the value of this function can be 
computed for t = 2 , 3 , .  . . , for example h ( t )  = 65(3) - 7.212, and h(3) = l ( 3 )  -4-  
0.8687, where 6 is the Riemann zeta function. From this it follows, in particular, that 
the difference Z3 - 2: /6  cannot be identically zero. This is sufficient to prove that the 
higher than one-loop order contributions to the anomalous dimension of the diffusivity 
yD are not identically zero. 

For yD we obtain 

~ { r ( 2 + ~ ) ~ ( ~ ~ - 3 ~ + i ) h ( 2 + ~ )  

+ (a2-  CY -3)[$'(1+ CY) - $'(1)]  +2}. (12) 
The three-loop contribution vanishes with CY as it should and, interestingly enough, it 
also vanishes at CY = -;, which corresponds to d,= 1 .  Due to infrared divergences, it 
is not obvious that the results of the field theory (4) hold for d = 1,  but the validity of 
the formula (12) in one dimension may be justified using the exact solution of the 
one-dimensional equation 

The fundamental solution of this equation 

Y )  = - 2 - l  d 5  exp[rC/(S) - 44x)l. I: 
averaged over the random potential distribution yields the averaged Green function 
G(x  - y )  = (G*(x, y ) ) .  Due to fixed dimensionality, we cannot use dimensional regulari- 
sation, and therefore take the regularised $$ correlation function in the form 

We obtain 

G (  x - y )  = -2-l d t  exp[Creg(o)-~,,g(S+x)~ 

which, after taking the limit p + 0 and leaving only the divergent in A contribution, 
yields G(x -y )  = -Z-lAg'TAl~-yl '+g'" where A is a constant independent of A. By 
a suitable choice of the renormalisation constant Z we obtain 

G ( x - ~ )  = --/x - ~ l ' + ~ ' ~  
On the other hand, renormalisation group argument yields G(x  - y )  - ( x  - y 1 2 - d + y ~ ,  
therefore in one dimension the anomalous dimension yD = g/ T exactly, which is in 
accord with the relation (12). 

In conclusion, we have calculated to three-loop order the anomalous dimension 
of the diffusion coefficient for the model of diffusion in a potential random field and 
found that, contrary to earlier conjectures, the three-loop contribution does not vanish 
identically. In addition to the two-dimensional problem with logarithmically growing 
correlations, we have shown that the anomalous dimension is given exactly by the 
one-loop expression also in one dimension. 
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